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PPlacebo response rates are particularly 
large in central nervous system (CNS) trials1–4

and have steadily increased over the past 
several decades.3,5,6 The risk that placebo 
response will obscure signal detection 
has led many pharmaceutical companies 
to reduce or close their CNS research and 
development programs.7–9 The recognition 
of placebo response as an obstacle to CNS 
drug development has inspired development 
of innovative placebo response mitigation 
technology (PRMT). Putative PRMTs are 
intended to reduce the risk of a failed 
clinical trial and target nearly all phases of 
CNS trials (e.g., recruitment and retention, 
outcome assessment, data collection, and 
analytics). Since PRMTs are at di� erent stages 
of development and uptake in CNS trials, 
drug developers face an overwhelming array 
of choices when considering new PRMTs. 

This manuscript is intended to aid CNS drug 
developers, regulators, and other stakeholders 
wanting to understand and critically evaluate 
various PRMTs.

Placebo mitigation e� orts have largely 
focused on CNS trial design features, such as 
blinded placebo lead-in periods, to identify 
early placebo responders and then adjust 
participation accordingly. Unfortunately, 
the evidence indicates that these “blind and 
re� ne” approaches show limited success in 
CNS trials.10–12 Furthermore, although brief, 
generic placebo response education is often 
provided to raters at investigator meetings, 
there is little evidence demonstrating the 
impact of such training on subsequent signal 
detection. The evolution of CNS trials toward 
increased implementation of digitalization, 
decentralization, and remote assessment13,14

creates opportunities for innovative solutions, 
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ABSTRACT

Excessive placebo response rates have long 
been a major challenge for central nervous 
system (CNS) drug discovery. As CNS trials 
progressively shift toward digitalization, 
decentralization, and novel remote assessment 
approaches, questions are emerging about 
whether innovative technologies can help 
mitigate the placebo response. This article 
begins with a conceptual framework for 
understanding placebo response. We then 
critically evaluate the potential of a range 
of innovative technologies and associated 
research designs that might help mitigate the 
placebo response and enhance detection of 
treatment signals. These include technologies 
developed to directly address placebo response; 
technology-based approaches focused on 
recruitment, retention, and data collection with 
potential relevance to placebo response; and 
novel remote digital phenotyping technologies.  
Finally, we describe key scienti� c and regulatory 
considerations when evaluating and selecting 
innovative strategies to mitigate placebo 
response. While a range of technological 
innovations shows potential for helping to 
address the placebo response in CNS trials, 
much work remains to carefully evaluate their 
risks and bene� ts.

KEYWORDS: Placebo response, clinical trials, 
technology, remote assessment, ecological 
momentary assessment, regulatory
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which have been marketed as strategies to 
mitigate placebo response, as well as enhance 
signal detection and e�  ciency of trial conduct. 
The current review provides an overview of the 
status and level of evidence supporting these 
diverse approaches.

To aid CNS drug developers and regulators 
seeking a starting point as they evaluate PRMTs, 
the manuscript is organized into three sections. 
First, we brie� y lay out a conceptual framework 
de� ning components of placebo response. 
Second, we o� er some critical evaluation of 
the promise of a range of currently available 
and emerging technologies in terms of their 
potential impact on components of placebo 
response. Third, we conclude by considering 
potential scienti� c and regulatory issues 
confronting drug developers as they evaluate 
and/or attempt to integrate PRMT into trials. 

CONCEPTUAL OVERVIEW OF THE 
PLACEBO RESPONSE: A MULTIFACETED 
PHENOMENON

The concept of placebo response is broad 
and heterogeneous.15–17 Out of necessity, 
clinical trials use a global operational de� nition 
in which placebo response for any primary 
outcome measure is simply the di� erence 
between the scores at baseline and endpoint 
for participants assigned to the placebo group. 
This di� erence score indexes improvement or 
worsening in response to an intervention with 
no direct physiological activity, generating a 
value that can be a benchmark for computing 
comparative e�  cacy. Since these change 
scores can re� ect several distinct processes, 
the size of a change score alone does not 
provide guidance for e� orts to mitigate placebo 
response. Therefore, we subdivide the complex 

topic of placebo response into more granular 
components. A useful initial heuristic segments 
operationally de� ned placebo response into two 
broad conceptual categories, which are depicted 
in Figure 1. 

Category 1 placebo responses are those 
in which the patient’s target condition (e.g., 
depression, anxiety, psychosis) improves, and 
this improvement is re� ected in changes in 
the primary outcome measure. These changes 
include what we de� ne as true placebo 
response—reactive responses to outcome 
assessments or other research procedures, as 
well as nonstudy interventions. Category 1 
responses can be largely understood as arising 
when expectations or experiences trigger 
physiological changes that result in actual 
improvement in the targeted condition (Table 
1). These in� uences include patient factors and 
interactions between subjects and study sta� . 
Studies by Kaptchuk et al18 and Czerniak et al19

demonstrated the clinically bene� cial e� ect of 
warmly engaged interaction with study sta� . 
Expectation e� ects are also powerful, in that 
telling subjects that placebo can be helpful 
for their condition has been shown to increase 
response even when the subject knows that the 
placebo is an inactive substance.20

Category 2 placebo responses are those 
in which scores on the outcome measure 
change, but the patient’s target condition does 
not. These include instances when changes 
in outcome measures are attributable to 
measurement error, response biases, and/or 
misconduct on the part of raters or participants. 
This type of placebo response might re� ect the 
inclusion of patients who do not truly meet 
entry criteria (e.g., illness or severity) due to 
errors in assessments, operational problems 

(including partial adherence to assessment 
outcomes), or other behaviors misaligned with 
the study objective (e.g., a participant or site 
rater exaggerating the severity of symptoms to 
gain entry into a clinical trial; Table 2). 

It is important to keep in mind that regardless 
of whether the origin of the placebo response 
is Category 1 or 2, a failed trial is de� ned by 
changes in the primary outcome that do not 
di� er between active treatment and placebo. 
Thus, both types of placebo response require 
mitigation. Although Category 1 responses 
imply meaningful clinical change with placebo 
treatment, this change is detrimental to the 
goals of identifying treatment e� ects in clinical 
trials and advancing the approval of new 
treatments. 

TECHNOLOGIES DEVELOPED TO 
DIRECTLY ADDRESS PLACEBO 
RESPONSE

In the past decade, several PRMTs have 
emerged in the CNS trial area. In this section, we 
review four approaches: arti� cial intelligence 
(AI), genomic biomarkers, participant training, 
and remote assessment. 

AI approaches to identifying placebo 
responder status. Although e� orts to identify 
a personality trait or characteristic that predicts 
placebo responder status have had limited 
success,21,22 recent applications of sophisticated 
multivariate data analytic approaches seem 
promising. AI approaches, including machine 
learning (ML)-based algorithms, o� er the 
potential to analyze large volumes of integrated 
data and can reveal unanticipated, complex, 
multivariate models of placebo response. While 
numerous speci� c ML algorithms are available, 
all of them generate predictive models which 
emerge from the interaction between the 
algorithm and dataset, rather than being 
speci� ed a priori and tested. Predictive ML 
models are initially created in a training dataset 
and then cross-validated with independent test 
data, which can be continuously re� ned as new 
data is added. How this would be applied to an 
ongoing clinical trial, particularly of a truly novel 
treatment, is a challenging question.

To date, only a handful of studies have 
applied even retrospective ML approaches to 
CNS trial data, with these studies examining 
data collected at or before baseline during 
previously completed randomized, controlled 
trials (RCTs). To illustrate these approaches, 

FIGURE 1. Operationally de� ned placebo response in clinical trials: the change in scale X that occurs while receiving 
placebo. Placebo response=Xbaseline-Xend of treatment
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three studies in major depressive disorder 
(MDD) examined: 1) 11 demographic, clinical, 
and cognitive variables in 174 older adults;23

2) 283 clinical, behavioral, neuroimaging, and 
electrophysiological variables 141 adults;24

and 3) 18 demographic, clinical, and cognitive 
variables in 112 adolescents.25 All three studies 
reported statistically signi� cant predictive 
models based on a subset of the variables 
examined in training datasets and con� rmed 
the models in test datasets. In addition, 
two of the studies developed subject-level 
calculators to predict placebo response, which 
showed moderate predictive accuracies. 
A few other studies using ML approaches 
found that variables such as self-reported 
treatment expectancies, sudden atypically large 
improvements on an outcome measure, and 
resting state functional magnetic resonance 
imaging (fMRI) functional connectivity 
characteristics signi� cantly predicted elevated 
placebo response in studies of depression and 
pain.26–29

Currently, promising proof-of-concept AI 
studies are emerging.30 No CNS RCT to date has 
used an AI-based placebo response calculator 
to manage enrollment; prospective studies that 
implement this approach are needed. There 
are also some important issues to consider 
regarding the acceptability of this approach. 
For example, ML-based models can be complex 
and nonintuitive, making it challenging for 
stakeholders (e.g., regulators or investors) to 
understand exactly how the algorithms work; 
this is a particular concern for algorithms that 
are not � xed. Furthermore, the implications 
of restricting enrollment based on potentially 
inaccurate models raises pragmatic, ethical, and 
regulatory concerns (discussed below).

Genomic biomarkers of placebo 
response. Advances in neuroimaging and 
genotyping technologies support the view that 
a true placebo response re� ects a biological 
response triggered by cues that accompany the 
administration of inactive treatments.31–33 For 
example, experimental neuroscience studies 
in pain, Parkinson’s disease, and depression 
indicate that certain neurotransmitters, 
including endogenous opioids, dopamine, 
endocannabinoids, and serotonin, are more 
strongly activated in individuals showing a 
larger placebo response.34–38 Such � ndings 
have inspired e� orts to identify candidate 
genes linked to the synthesis, signaling, 

and metabolism of these transmitters that 
relate to placebo responder status. Although 
the study of genomic e� ects on the placebo 
response, or the placebome, is very early in its 
development, there have been a number of 
intriguing � ndings from retrospective studies. 
Several single nucleotide polymorphisms 
(SNPs) related to functional characteristics of 
the neurotransmitters systems noted above 
(e.g., catechol-O-Methyltransferase [COMT], 
mu-opioid receptor gene [OPRM1]) have shown 
replicable associations with placebo response.33

Further investigation of genetic factors holds 
the promise of identifying an objective, stable 
trait or combination of traits to prospectively 
identify subjects with low potential for placebo 
response for sample enrichment. However, 
considerable work remains to translate the 
emerging, complex placebome into strategies 
that can be applied to CNS trials. For example, 
we do not yet know whether the sensitivity of 
available assays to detect placebo responder 
status is adequate for trial use; we do know that 

genomic contributions measured by genome-
wide association studies (GWAS) account for less 
than 20 percent of the variance in susceptibility 
to complex traits, such as depression and 
schizophrenia, which would not provide 
acceptable sensitivity for screening. In addition, 
clinical trial outcomes might be di� erentially 
modi� ed by putative placebo genotypes in the 
placebo versus drug treatment arms (genotype 
x treatment interactions).32,33 This complexity is 
compounded when one considers the possibility 
of disease-speci� c (genotype x treatment 
condition x disease) or epigenetic e� ects on 
these interactions.

Placebo response mitigation training for 
study participants. Although CNS trials often 
include brief, generic education for raters at the 
launch of a trial, we still lack evidence that such 
one-time training impacts placebo response 
or signal detection. New patient-focused 
training approaches have been developed, 
which aim to help participants more accurately 
report symptoms, provide valid information 

TABLE 1. Category 1 responses in which the subject and scale improve
RESPONSE DEFINITION/CONSIDERATIONS

True placebo response
Expectation and/or conditioning trigger a psychological process, leading 
to actual physiological change.

Nonspeci� c 
responses

Natural course of 
illness

Improvement occurs because the condition has run its natural course, 
e.g., if two-thirds of patients with acute knee pain experience pain 
resolution in 6 weeks, signal detection would be a challenge with a 
primary endpoint at 12 weeks.

Regression to the 
mean

Improvement due to underlying variation in scores; a sample drawn from 
a subset at either end of the distribution of subjects is likely to have a 
score closer to the mean at the next assessment.

Response to a nonstudy intervention
Subject initiates a treatment that amelliorates their symptoms, e.g., 
subject with anxiety disorder increases use of alcohol/cannabis or 
physical exercise.

TABLE 2. Category 2 responses in which the scale improves but the subject does not
RESPONSE DEFINITION/CONSIDERATIONS

Pseudo-placebo 
response: 
measurement error

Diagnostic 
assessment error

Diagnostic categories or assessment tools that are heterogeneous, poorly 
validated, and/or unreliable

Unreliable severity 
ratings

Sources include inadequate training, rate change, time constraints, 
intercurrent events, and socially desirable response bias in symptom 
reports.

Intentional mischief

Misrepresentation

Subject with exclusionary condition is coached to meet eligibility, e.g., 
subject with Montgomery–Åsberg Depression Rating Scale score below 
entry criteria is “rescreened,” or subject with low white blood cell count is 
told to repeat blood draw after exertion.

Misreporting

Deliberate omission or deception intended to ensure study eligibility, 
e.g., subject denies suicidality, substance use, or recent improvement 
for fear of being excluded, or subject is a “professional patient,” meaning 
they mimic entry criteria (which can be learned from the internet or by 
word of mouth) but does not have the disorder under study. 
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about placebo-controlled trials, and moderate 
participant expectations. These approaches 
have mainly been developed and tested in the 
areas of pain and psychiatry. 

In the area of pain, high variability in pain 
reporting (presumably driven at least in part 
by error variance or personality factors) is 
associated with larger placebo responses.39–43

Accurate pain reporting training (APRT) is based 
on the theory that patients who can accurately 
utilize internal cues to report pain levels are 
less likely to be in� uenced by external cues 
that can increase placebo response. In a series 
of training sessions, patients are exposed to 
painful stimuli at di� erent intensities, provide 
pain ratings, and receive standardized feedback 
about the accuracy of their pain ratings 
(relative to the objective stimulus intensities).39

In a RCT for painful diabetic neuropathy 
(N=51), those who received APRT showed a 
signi� cantly smaller placebo response than 
those who did not receive APRT (though there 
was no separation between active treatment 
vs. placebo in the trial).43 Furthermore, the 
placebo response rate in a RCT of neublastin for 
painful lumbosacral radiculopathy (LSR) that 
used APRT (19.1%)44 was signi� cantly smaller 
in comparison to similar trials that did not use 
APRT (38.0%).39 These � ndings provide initial 
support for this approach to increasing the 
accuracy of pain reporting. 

In the psychiatric area, the Placebo-Control 
Reminder Script (PCRS),45 an interactive 
procedure designed to educate patients on 
factors known to amplify placebo response, 
has been developed and tested. A rater reads a 
brief script about expectation biases related to 
treatment bene� t, the purpose of a placebo-
controlled trial, how interactions with clinical 
trial sta�  di� er from therapeutic interactions, 
and the importance of attending to these biases 
when reporting on their symptoms. The rater 
then collaboratively queries the patient about 
their understanding of the material. The PCRS 
is administered at the initial study visit and 
each subsequent key study visit. Although the 
PCRS has not yet been used in a prospective, 
randomized trial, in a quasi-experimental 
study, currently depressed patients (N=137) 
with major depression or schizophrenia were 
informed that they would be randomized 
to receive an antidepressant or placebo. All 
participants actually received placebo and were 
randomized to PCRS and no PCRS groups. The 

PCRS group reported a signi� cantly smaller 
placebo response (i.e., smaller reduction in 
depression) and signi� cantly fewer adverse 
events (nocebo e� ect) than the no PCRS group. 

Overall, initial evidence from studies in pain 
and psychiatry indicates that providing brief 
training or psychoeducation to participants, 
either to enhance symptom reporting accuracy 
or attend to placebo response-related factors, 
can help mitigate the placebo response. It 
remains to be determined whether such 
approaches could reduce placebo response 
alone versus response to both placebo and 
active treatment. 

Remote rater-based clinical 
assessments. Recent years have witnessed 
a rapidly growing interest in shifting from 
conventional in-person assessments to 
assessments that are conducted remotely by 
o� -site raters. This approach has already been 
extensively used for clinician-reported outcome 
(ClinRO) measures across many CNS indications. 
During the COVID-19 pandemic, the United 
States Food and Drug Administration (FDA) 
also signaled openness to remote collection of 
patient-reported outcomes (PROs) and more 
complex performance outcome assessments.46

For ClinROs, video or teleconferencing is used 
to conduct live interviews between a patient 
at a trial site and a remote rater (who can be 
blinded to study visit as well as treatment 
condition) from a limited pool of highly 
trained, tightly calibrated interviewers who 
can presumably achieve higher reliability than 
a larger group of dispersed raters. Remote 
clinical assessments have the potential to 
impact placebo response in several ways, 
including reducing measurement error and 
biases (Category 2), but they might also have 
an impact on Category 1 placebo responses by 
reducing placebo-augmenting sta� -subject 
interactions. 

To date, there are three published studies 
comparing remote and in-person rating 
assessments.47–49 One consistent � nding is that 
remote raters blinded to study entry criteria 
reported lower symptom severity ratings than 
site-based raters at screening and baseline 
visits, suggesting the potential for remote 
raters to mitigate baseline in� ation bias. 
Alternatively, maintaining site unawareness 
of entry criteria could be easily achieved with 
technology-based assessments where the 
only feedback that the site receives is whether 

the participant is eligible. Category 2 placebo 
responses can originate from the “� rst honest 
assessment” challenge, which can be bypassed 
when the sites are not tasked with making the 
determination that patients manifest a certain 
level of severity of impairment and hence can 
be randomized.

Regarding bene� ts for the placebo response 
and treatment-signal detection, the results 
have been mixed. In one MDD trial,47 within the 
placebo group, interviewer-rated improvement 
in depression was signi� cantly smaller for 
remote assessments (conducted by video 
conference at 3 of the study visits), compared to 
site-based assessments (conducted at 5 study 
visits). However, this di� erence in placebo 
response was not signi� cant when the analysis 
was limited to subjects who met inclusion 
criteria based on the remote assessments. Drug 
versus placebo group comparisons in the extent 
of response were not evaluated. In a second 
MDD trial,48 the placebo response did not 
di� er between remote (video conference) and 
site-based assessments (conducted at all study 
visits for both). Notably, drug versus placebo 
group di� erences were found for site-based 
ratings, but not for remote ratings. Finally, in 
a generalized anxiety disorder trial,49 within 
the placebo group, the placebo response was 
signi� cantly smaller for remote assessments 
(conducted by telephone at 2 study visits), 
compared to site-based assessments 
(conducted at 6 study visits). Drug versus 
placebo group di� erences were not evaluated. 

In this context, it is worth noting the � ndings 
from the large Phase III Rapastinel program 
for treatment-resistant depression,50 which 
found no di� erence in the placebo response 
rates or drug versus placebo separation across 
three essentially identical trials, including two 
trials with remote ratings and one trial with 
site-based ratings. In contrast, longitudinal 
information across trials supported the use 
of remote assessments in the valbenazine 
development program for tardive dyskinesia. 
The company’s earlier studies using site-based 
raters showed considerable placebo response, 
but their pivotal studies used central raters 
who were unaware of the study visit sequence. 
The ratings were based on recorded video 
rather than live interviews, so it was easier 
to maintain rater blindness to visit sequence. 
This approach appeared to markedly reduce 
the placebo response and suggests that rater 
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bias based on knowledge of the time course of 
treatment to date can impact on their ratings.51

In summary, there is no clear signal that 
remote clinical assessments facilitate separation 
of drug and placebo arms. Within studies of 
the same treatment, evidence is also mixed, 
suggesting that remote ratings do not provide a 
guarantee of reduced placebo e� ects. 

TRIAL TECHNOLOGIES WITH POTENTIAL 
RELEVANCE TO PLACEBO RESPONSE

In this section, we consider various potential 
trial technologies that could largely impact 
Category 2 placebo response related to the 
recruitment and retention, data collection, and 
signal analytic components of a trial. 

Recruitment, exposure to assessments, 
and retention. While greater public awareness 
can positively a� ect drug development, 
widespread media coverage of clinical trials 
and novel drugs impact how people view 
clinical trials in ways that can increase placebo 
e� ects.52 For example, the large-scale media 
coverage surrounding dramatic improvements 
seen in early trials of putative, fast-acting 
antidepressants, such as ketamine or psilocybin, 
can engender widespread expectations in 
those joining a trial.53,54 Moreover, increased 
information might attract more individuals 
who are not appropriate for a trial who then 
exaggerate symptoms to be included. While 
studies show that using social media can 
increase recruitment into trials,55 there has been 
little discussion of potential drawbacks.

With respect to recruitment and retention, 
electronic informed consent (e-consent) 
using a variety of digital tools has been 
increasingly studied as an alternative to an 
in-person paper review consent process.56 Use 
of a single common presentation describing 
study procedures, risks, and bene� ts during 
the consent process might keep participant 
expectations more consistent across sites and 
control investigator/participant interactions 
that can increase placebo response.57 Literature 
reviews suggest that e-consent can increase the 
knowledge and understanding of important 
clinical trial concepts, such as placebo and 
blinding, but there is no published evidence for 
an impact of e-consent on placebo response 
rates or signal detection in an actual clinical 
trial.56,57

Data collection methodology. Repeating 
an assessment, also known as tandem ratings, 

o� ers a simple solution to the common problem 
of unreliable reporting prior to randomization. 
Max Hamilton advocated the use of two raters 
to administer the Hamilton Depression Rating 
Scale (HAM-D; 1960) and recommended 
declaring highly discordant ratings to be invalid 
rather than attempting to resolve substantial 
di� erences between the raters.58 Several global 
clinical trials have adopted variations on this 
technique for excluding subjects with highly 
discordant ratings. Pre-planned (mania trial)59

and post hoc analyses (multiple depression 
trials)60 revealed better signal detection in 
subjects whose baseline diagnosis or severity 
ratings were concordant between a site-based 
rater and a central rater or computer-simulated 
rater (CSR). Post hoc analyses show that limiting 
enrollment to subjects for whom tandem 
Montgomery–Åsberg Depression Rating Scale 
(MADRS) ratings were concordant prior to 
randomization is associated with better signal 
detection in successful, as well as negative, 
trials.59  –61 There are no prospective trials 
reporting results for subject selection based on 
tandem rating criteria versus ratings without 
exclusion.

A variety of digital and electronic tools exist 
to standardize and improve data collection 
processes during clinical trials, and these 
can impact placebo response. Electronic 
clinical outcome assessments (eCOAs) use 
digital platforms to collect patient-reported, 
observer-reported, and clinician-rated data. 
Conventional pen-and-paper COAs, including 
performance-based outcomes, are increasingly 
being transformed into digital formats for 
CNS trials. Digital platforms that guide raters 
through clinical interviews in a systemic manner 
provide an opportunity to decrease variability in 
administration, reduce informal interpersonal 
exchanges during data collection,62,63 and alert 
the interviewer to out-of-range entries or 
potential inconsistencies in ratings. Some eCOA 
systems also provide the opportunity to record 
audio and/or video of interviewers, which can 
be reviewed and used to provide feedback to 
raters about interview quality; additionally, 
feedback speci� cally designed to keep placebo-
augmenting e� ects to a minimum can be 
provided to raters.

Digital or video adherence monitoring 
(e.g., capturing video as participants take 
their medication using a smartphone 
application [app]) targets measurement error 

by identifying individuals who are not taking 
study medication during screening and has 
the added bene� t of prompting adherence 
during a trial, which is likely to increase 
placebo versus treatment di� erences if a drug is 
e�  cacious.64 Data illustrate that virtual digital 
observation technology or the use of electronic 
observational devices can improve adherence, 
but data have not addressed placebo response 
rates.65

CSRs have been used in mood disorder studies 
for nearly 20 years. A CSR is a computer program 
that conducts an interview and determines a 
score on standard ClinROs. The CSRs present 
questions in the form of text or voice and ask 
subjects to select their response from a range of 
multiple-choice options. The CSR then uses an 
algorithm to select the next question and map 
the responses onto an anchor point for each 
item. This technique has been used for tandem 
ratings in global trials as a quality assurance 
technique, but there are no data on the impact 
for placebo response.66

An adjacent theoretical possibility involves 
using virtual reality (VR) technology to 
administer clinical rating scales in clinical trials 
using an avatar.67 This type of approach could 
directly control human factors and standardize 
“interviewer” (chatbot) behavior across trial 
visits and trial sites. Interactive VR environments 
and voice recognition systems are already 
increasingly common in assessment and 
intervention contexts, both o�  ce- and home-
based.68–72

Prospective blinded data analytics. The 
adoption of eCOA systems, which capture clinical 
trial data in real-time, creates opportunities 
to apply blinded data analytics throughout 
the course of a clinical trial. These analytics 
are currently used to identify subjects, raters, 
or sites with unusual response pro� les (e.g., 
extreme variation or unexpected dramatic 
improvements between visits, identical ratings 
across visits) for further evaluation during the 
course of a clinical trial. Actionable � ndings 
can improve signal detection by remediating 
problems or ending enrollment at sites with 
high rates of error. One goal of blinded data 
analytics is to detect patterns in clinical 
trial data that are associated with elevated 
placebo response and reduced drug-placebo 
separation. PRMTs of this type use quality 
metrics and statistical tests to quickly identify 
and potentially remediate measurement/
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rating errors that contribute to in� ated placebo 
response. Several recent retrospective studies 
have conducted post hoc analyses of CNS trial 
data to identify relevant response patterns, 
� nding that unusual or erratic ratings were 
associated with in� ated placebo response at the 
subject and site levels.73–76

EMERGING DATA COLLECTION 
APPROACHES: DIGITAL PHENOTYPING 

A wide array of mobile digital devices that 
people carry (e.g., smartphones) or wear (e.g., 
on the wrist, insoles) are increasingly used for 
clinical trial data acquisition. These novel digital 
phenotyping (DP) methods have the potential 
to capture wide-ranging momentary data 
from participants during their daily lives.77 DP 
measures fall into two broad categories: active 
or passive. Active DP requires participants to 
make deliberate responses on a smartphone or 
other portable device. For example, ecological 
momentary assessment (EMA), which has 
been extensively used in clinical psychology 
and psychiatry research,78–80 repeatedly cues 
participants to complete brief surveys about 
what they are doing, thinking, and feeling 
multiple times per day as they go about their 
regular activities. Participants can also be cued 
to complete performance-based measures, such 
as cognitive or social cognitive tasks.81,82

Passive DP measures require no deliberate 
action or e� ort on the part of the subject. 
Data are automatically extracted from sensors 
in smartphones or wearable devices as 
participants go about their daily activities. In 
addition, metadata on how participants interact 
with their smartphone or device, such as the 
number of texts/emails initiated and received, 
frequency of typing errors, linguistic analyses 
of message content, and time spent on social 
media, can be automatically captured. Other 
examples include actigraphy measures of 
movement, Global Positioning System (GPS) 
coordinates of location, physiological sensors 
to detect heart rate or electrodermal activity, 
and insole recordings of gait characteristics. The 
huge volume of data captured through these 
devices are transformed, using open-source or 
proprietary AI-based algorithms, into metrics 
with the potential for clinical meaningfulness 
(e.g., GPS coordinates can be quanti� ed into the 
number of locations visited, distance traveled, 
or steps taken outside of one’s home).83 A 
proliferation of passive indices has emerged 

in the marketplace, and initial evidence 
increasingly supports their validity as indicators 
of speci� c signs/symptoms and functioning for 
many CNS conditions, including mood, anxiety, 
psychotic disorders, and dementia.77,84–87

DP technologies represent a new class of 
endpoints that have the potential to mitigate 
placebo response in several ways, although 
implementation in CNS clinical trials is just 
beginning. Several features of DP could reduce 
Category 2-related error associated with 
conventional ClinROs or PROs. For example, 
EMA can provide momentary, high-frequency 
assessments of daily activities and experiences 
while minimizing errors in retrospective 
reporting or recall biases. In line with this 
notion, a recent treatment study of distressed 
older adults found that EMA measures of 
depression and anxiety were more sensitive 
to treatment e� ects than conventional 
cross-sectional measures with longer recall 
periods.88,89 DP could also reduce Category 1 
placebo response by reducing the subject-sta�  
interactions required for outcome measurement. 
Since active DP measures are completed outside 
of a trial site, interactions with the site sta�  and 
trial environment are minimized. Patients might 
also provide more accurate reports for EMA than 
face-to-face ratings for several reasons, such 
as the relative anonymity of completing digital 
surveys; the fact that momentary response 
requirements preclude participants from having 
the opportunity to consider what they would 
be “expected” to report; and the potential for 
contemporaneous reports of behaviors and 
moods/symptoms to be able to adjust for 
common biases to report greater impairment 
and disability during periods of anxious or 
sad moods, which is a particular problem in 
trials with only a few dispersed assessment 
visits. Supporting these ideas, there is some 
evidence that people are more likely to report 
suicidal behavior with remote than in-person 
assessments.90 Furthermore, since passive DP 
assessments involve no subjective reporting, 
e� ort, or even awareness of the data collection 
on the subject’s part, one would expect them 
to be less susceptible to interpersonal and 
psychological factors that in� ate placebo 
response.

DP can be integrated into clinical trials to 
mitigate placebo response in many ways. Two 
examples include assessing for nonadherence 
prior to randomization and conducting interim 

assessments between key in-person study visits.
Using DP to assess adherence before 

randomization. It is important to determine 
if potential clinical trial participants are unlikely 
to adhere to study procedures and will be at 
high risk to drop out. Identi� cation strategies 
need to balance timing (as early as possible; 
well prior to randomization) and bias (do not 
exclude patients because of their critical target 
symptoms). During run-in periods prior to 
any blinded treatment, participants can be 
asked to participate in minimally demanding 
assessments that are not directly related 
to the primary outcomes of the study (e.g., 
answering a 2-question, 30-second, EMA survey 
querying location and social context) to test for 
longer-term adherence to study procedures. 
Available data in neuropsychiatric samples (e.g., 
schizophrenia, bipolar disorder) indicate that 
potentially nonadherent participants can be 
identi� ed early and clinical symptom severity 
does not predict those patients found early to be 
at high risk for nonadherence,91 meaning that 
meeting severity criteria for a trial does not bias 
determinations of potential nonadherence. 

Technology allows for dense repetition of 
assessments prior to initiation of treatment, 
which can probe for participants who manifest 
improvements or excessive variance in 
their reported symptoms across successive 
assessments. As these assessments can be 
initiated during screening periods prior to 
randomization, exclusion of participants 
who are excessively variable, responsive, or 
nonadherent does not involve retroactive 
elimination of randomized participants. Several 
large-scale studies have demonstrated very high 
correlations between early adherence to EMA 
assessments and eventual adherence over the 
course of the entire study.91

There are several factors associated with 
adherence to EMA assessments. Interestingly, 
compensation for participation is very 
important, with the least adherence in studies 
with no compensation, better adherence 
in studies with compensation, and the best 
adherence in studies with momentary (survey 
by survey) compensation.92 While compensation 
for engaging in device-based training, such 
as computerized cognitive training, might 
challenge the results of studies, participants 
who are assessed with many common EMA 
assessment strategies do not know what the 
“correct” answer is. The density of surveys is also 
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important, with the paradoxical � nding that 
more surveys per day is associated with greater 
adherence, up to a certain point.91,92 A once-per-
day survey schedule means that a missed survey 
is a missed assessment day, while more dense 
survey strategies lessen the impact of individual 
missed surveys.

If one of the bene� ts of DP during a run-in 
period is to identify erratic, partially adherent, 
and potentially placebo-responding patients, 
what should be done when they are detected? 
Early and complete nonadherence to assessment 
procedures should lead to exclusion from the 
trial, particularly if this behavior is detected 
prior to randomization and the data are not 
shared concurrently with the site. Similarly, 
a placebo response induced by repeated 
assessments prior to any treatment also 
suggests that exclusion should be considered.

Using DP for interim assessments. Since 
exposure to excessive numbers of human 
interactions might produce Category 1 placebo 
responses, technology can also be used to 
perform interim assessments. It is likely true 
that assessments that are too widely separated 
might be associated with reduced engagement 
on the part of participants; interim assessments, 
even if the content is not obviously related 
to the primary outcome measure, could be a 
factor in increasing engagement in the study 
and increasing motivation on the part of 
participants to validly report their symptoms 
and functioning during in-person assessments. 
For example, in the SERENITY III Part 2 study 
by Bioexcel,93 participants with schizophrenia 
or bipolar disorder will be treated for agitation 
at home in a double-blind, placebo-controlled 
study. Participants and informants will report on 
the occurrence and severity of agitated episodes 
using EMA surveys. As agitated episodes are 
expected to be dispersed, informants and 
participants will be contacted daily and asked 
to answer agitation and mood questions to 
promote engagement in the study between 
agitated episodes.

Potential pitfalls of DP. Despite the 
appeal of DP, experience with these methods is 
limited, and their psychometric properties and 
validity for use in CNS trials is not adequately 
understood. There are several areas of potential 
concern, but results are inconsistent across 
studies, with some seeming much better than 
others. For example, correlations between 
legacy COAs and DP measures, or between 

active and passive DP measures, are sometimes 
vanishingly small (or counterintuitively related), 
raising questions about which metric is correct. 
There are several studies where correlations 
were found to be quite substantial,92 raising 
concerns about the sources of variation in 
convergence across studies. 

It is also important to consider potential 
unintended, or even placebo-genic, 
consequences of DP assessments from the 
outset. For example, although DP decreases 
direct contact with the clinical site environment, 
people can have high levels of a�  nity for 
their digital devices, hold strong expectations 
about their capabilities, and even experience 
smartphone separation anxiety, suggesting that 
our devices might be infused with psychological 
meaning rather than being neutral objects.94

It is unclear if a device provided to a research 
participant would induce the same connection. 
Notably, although technology has the potential 
advantage of avoidance of the therapeutic 
bene� ts of empathy associated with human 
contact, it still involves exposure to assessment 
content. For example, several studies of 
posttraumatic stress disorder (PTSD) have had 
substantial placebo e� ects,95 which could be 
due to the exposure-related features of common 
PTSD outcome assessments; re-exposure during 
assessment of traumatic experiences and 
emotional reactions to those experiences could 
easily occur with technology as well. 

Theoretically, completing multiple EMA 
surveys per day could induce a therapeutic 
e� ect, leading to reductions in symptoms even 
in the absence of a formal intervention.96–99

However, several studies have found essentially 
no changes in the severity of psychotic or mood 
disorder symptoms, with as many as 90 surveys 
over 30 days.92 The novelty of using a new device 
or app might strongly impact participants’ 
positive behavioral and experience changes 
apart from any active treatment-related 
e� ects.92

DP approaches might also have unintended 
adverse e� ects on trial participants. For 
example, repeated EMA queries about negative 
mood or distressing thoughts could lead to an 
unintended focus on and worsening of these 
symptoms. Notably, there is some evidence that 
asking people about suicide on EMA surveys 
does not appear to be a risk factor for increasing 
suicidal ideation,100 and that participants 
are willing to endorse suicidal ideation and 

related content in an EMA survey format.101,102

Furthermore, once the initial novelty of a new 
technology subsides, continued engagement 
of trial participants could be impacted. Past a 
certain point, lessening human interaction could 
have the unintended consequence of diminished 
participant engagement in trials and higher 
dropout rates.103 However, this is speculation, 
and in some studies, EMA measurements of 
symptoms and functioning have gone on for 
12 months with minimal evidence of either 
participant study fatigue or deterioration in 
quality of data.

CONCLUSION AND PATHS FORWARD
A large range of available and rapidly 

emerging technologies have the potential to 
mitigate distinct components of the placebo 
response in CNS trials. However, the evidence 
base supporting their ability to meaningfully 
reduce placebo response is currently small. 
No published studies have directly evaluated 
whether any of the technologies reviewed 
demonstrate an impact on the placebo 
response in an actual clinical trial in which 
subjects are randomized to PRMT versus a 
control group. Of all the PRMTs considered, the 
most methodologically rigorous evaluations 
have been applied to participant training 
approaches and remote assessments. There 
is consistent support for novel training 
strategies based on a small set of studies; 
only one out of three relatively rigorous 
comparisons between remote- and site-
based assessments demonstrated evidence of 
placebo response reduction. The promise of 
AI methods, genetic biomarkers, and blinded 
signal analytics comes from post hoc analyses. 
Furthermore, the potential positive or negative 
impacts of many newer technologies, such 
as direct outreach/advertising through social 
media and high frequency DP, have received 
minimal consideration. Overall, much more 
research, particularly prospective studies with 
randomized designs, is needed to convincingly 
demonstrate the e�  cacy of the technologies 
considered. There are several FDA-regulated 
studies in progress where this strategy is in 
place; as some of these studies are quite large, 
they might provide considerable evidence in the 
near future. 

Products that aim to be marketed as PRMTs 
will require a higher standard of evidence 
to demonstrate placebo response reduction 
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e�  cacy and should consider seeking formal 
approval as a medical device (e.g., if the product 
meets the de� nition of a medical device) or 
regulatory quali� cation via programs such 
as the FDA Quali� cation Program104 or the 
European Medicines Agency (EMA) quali� cation 
procedure.105 To make progress in addressing 
the pervasive placebo response challenge, the 
CNS � eld will bene� t from pursuing additional 
pathways and collaborative e� orts. One 
approach is for precompetitive collaboration 
among pharmaceutical companies to pool data 
and � nancial resources to develop and test 
promising solutions for the shared challenge of 
placebo response. For example, organizations 
like the Critical Path Institute (https://c-path.
org) provide infrastructure to create a neutral 
environment for industry and academia, as well 
as regulators and other government agencies, 
to work together to accelerate and derisk drug 
development. Sharing and pooling data to 
compare results across completed trials using 
di� erent technologies (e.g., versus conventional 
approaches) could also help guide the � eld 
toward promising approaches that warrant 
more rigorous evaluation. 

Regulatory considerations. Like all 
aspects of drug development, PRMTs employed 
as part of new drug and device applications will 
encounter regulatory scrutiny. Looking ahead, it 
can be expected that more technologies aimed 
at mitigating placebo response, with varying 
levels of empirical support, will be incorporated 
into protocols. An increase in new technologies 
aimed at increasing trial e�  ciency that 
might inadvertently impact placebo response 
(positively or negatively) can also be expected. 
Since regulators have extensive experience with 
reviewing methods aimed at preventing error, 
we expect technologies directed at Category 2 
placebo responses will raise less concern than 
those aimed at the mitigation of Category 1 
placebo responses. 

Regulators long accustomed to studies 
using single- and double-blind lead-in might 
recognize technologies that enhance blind 
and re� ne strategies as extensions of legacy 
experience. Proposals to predict placebo 
response to restrict the population studied 
will likely face a higher burden and/or more 
restrictions in the pursuit of regulatory 
acceptance, given potential questions regarding 
the generalizability of � ndings to the broader 
target patient population. This concern will 

likely be mitigated if the discovery of these 
risk factors, such as nonadherence, occurs very 
early in the screening process. Regulators do 
not require that a proportion of participants 
enrolled in clinical trials be nonadherent. It 
is important to consider that there are many 
situations wherein the selection process for 
clinical trials (e.g., exclusion of comorbidity in 
domains of substance use or obesity) makes 
the trial population less representative than the 
general population. 

As investigators using PRMTs prepare to 
engage with regulators, it will be critical to 
understand the proposed technology, its 
operational details, and its intended context of 
use. Communication with regulators is key and 
most helpful when begun early. This could be 
especially important when the PRMT represents 
an addition to a protocol in a program that has 
previously failed due to high placebo response. 

We conclude by highlighting three key 
questions. First, how should AI/ML algorithms 
be applied to identify placebo responders 
in clinical trials? The number of regulatory 
submissions to the FDA that included AI/ML 
approaches for drug development has grown 
considerably in the past � ve years.106 AI/
ML is central to many technologies aimed at 
prospectively identifying placebo responders 
based on individual-level characteristics and 
blinded signal analytics, as well as DP. In 
2021, the FDA and other regulatory agencies 
jointly issued 10 guiding principles for Good 
Machine Learning Practice for medical device 
measurement.107 Many of these principles, 
such as multidisciplinary collaboration, data 
quality assurance and robust security, and 
independence of training and testing datasets, 
are also applicable to drug development. For 
AI/ML applications in drug development, 
additional issues include standards for proper 
validation, locked versus continuously learning 
algorithms, generalizability, transparency/
explainability (particularly for proprietary 
algorithms), and safety and privacy risks.108

The FDA subsequently published a discussion 
paper and request for feedback on a proposed 
regulatory framework for AI/ML-based software 
as a medical device and draft guidance on 
marketing submission recommendations for 
a predetermined change control plan for AI/
ML-enabled device software functions.109,110 The 
EMA also recently published a draft re� ection 
manuscript on this topic.111

Second, if we could prospectively identify 
placebo responders, how should that 
information be used to design and analyze 
data from clinical trials? One possibility would 
be a predictive sample enrichment approach 
that selects or strati� es patients based on 
placebo responder status, using prospectively 
planned and � xed criteria, with the expectation 
that the detection of a drug e� ect would be 
more likely than it would in an unselected 
population. From a scienti� c perspective, 
it is worth noting that the same processes 
that underlie placebo response might be 
an important component of the bene� cial 
response experienced by patients receiving 
active treatment with the investigational 
product, raising the possibility that such 
approaches could diminish the separation of 
active versus placebo treatments.3,112 Aside 
from this consideration, general FDA guidance 
on enrichment strategies113 emphasizes 
concerns related to the generalizability and 
applicability of study results. To enrich for 
placebo nonresponders, sponsors would need 
to consider whether an enrichment approach 
based on placebo response status could be used 
in practice to identify patients to whom a drug 
should be given, which has key implications for 
drug labeling, as well as the extent to which 
patients who do not meet the selection criteria 
(i.e., placebo responders) should be studied. 
Furthermore, the accuracy of measurements 
to identify an enriched population is also 
key, yet we currently know little about the 
prevalence and sensitivity/speci� city of AI/ML- 
or biomarker-based approaches to identifying 
placebo responders. 

Third, how can DP be optimally leveraged 
to help mitigate the placebo response? The 
hope is that DP will address long-standing 
challenges, such as the placebo response, 
by virtue of superior validity and reliability, 
as well as decreased susceptibility to 
psychosocial in� uences, compared to legacy 
clinical phenotypes. Our understanding of 
the impact of DP on the placebo response is 
only just beginning to be informed by data. 
Recognizing the promise and rapid expansion 
of DP technologies, the FDA recently issued 
draft guidance on the use of digital health 
technologies to acquire data remotely.114

The document describes key regulatory 
considerations for selecting measures that are � t 
for purpose, with demonstrated psychometrics, 
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validity, and usability in the target population. 
Digital technologies also raise unique issues 
related to data integrity, interoperability, 
cybersecurity/hacking risks, and attributability; 
many of these issues are addressed in 
the recently published EMA Guideline on 
Computerized Systems and Electronic Data in 
Clinical Trials.115 The FDA has recently endorsed 
Phase III research designs in which DP is a 
central element of either subject selection or 
data collection.51,116 Thus, some DP technologies 
are now transparent, reliable, and valid enough 
for regulators to understand their procedures 
and outcomes and agree with their purpose 
in the trials. Stakeholders need to continue 
developing policies and procedures to address 
these issues.117,118

The placebo response challenge in CNS 
trials has a long and well-documented history. 
Although a range of current and emerging 
technologies show promise for addressing 
this challenge, the evidence base is small to 
date. Meaningful progress will require careful 
consideration of the potential pitfalls of rapidly 
emerging technologies, rigorous evaluation of 
their putative e� ects, and close collaboration 
among diverse stakeholders committed to CNS 
drug discovery. 
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